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Spurious velocities are unphysical currents that appear close to curved interfaces in diffuse interface meth-
ods. We analyze the causes of these spurious velocities in the free-energy lattice Boltzmann algorithm. By
making a suitable choice of the equilibrium distribution, and by finding the best way to numerically calculate
derivatives, we show that these velocities may be decreased by an order of magnitude compared to previous
models. Furthermore, we propose a momentum conserving forcing method that reduces spurious velocities by
another factor of �5. In three dimensions we find that 19 velocity vectors is the minimum number necessary.
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I. INTRODUCTION

A commonly used approach for the simulation of multi-
phase fluid dynamics is the free-energy lattice Boltzmann
method introduced by Swift et al. �1�. This constitutes a so-
called mesoscale method because it numerically solves the
continuum equations of fluid dynamics by exploiting the un-
derlying microscopic structure of these equations, without
resorting to a description of the fluid in terms of molecular
dynamics. One obstacle to simulating some systems is that
discretization errors lead to unphysical flows near interfaces.
These so-called spurious velocities are present in multiphase
lattice Boltzmann methods and in the other diffuse interface
methods.

An illustration of these spurious velocities is given in Fig.
1�a�, which shows the flow profile around a liquid drop co-
existing with a surrounding gas phase. The simulation is left
until the long time steady-state behavior is reached. From a
physical point of view all velocities should go to zero. What
is observed, however, is that spurious flows persist indefi-
nitely.

A number of papers have dealt with this problem. Wagner
�2� analyzed the case of binary fluids, and identified that one
way to eradicate spurious velocities was to remove nonideal
terms from the pressure tensor and introduce these as a body
force of the form g=−����. However, because this is no
longer written in terms of the divergence of a pressure tensor
�note that in general −���� can always be rewritten as
−��P��� then momentum is no longer conserved. Further-
more, Wagner pointed out that this method is numerically
unstable unless some additional viscosity is artificially added
to the system.

Lee and Fisher �3� use another forcing method for a dif-
ferent implementation of the lattice Boltzmann algorithm.
Again, they eliminate spurious velocities at the expense of
sacrificing momentum conservation. An additional difficulty
with using forcing methods �including the one we present
later� is that in order to update each lattice site the algorithm
requires information from two lattice sites away, rather than
just one for the standard method. This makes boundary con-
ditions more complicated and slows down parallel computa-
tions, since more information needs to be passed between
processors.

Seta and Okui �4� used a lattice Boltzmann scheme pro-
posed by Inamuro et al. �5�, and considered calculating the

derivatives in the pressure tensor using a more accurate
fourth-order scheme �as opposed to the usual second-order
accurate method�. As will be shown later, however, they do
not choose an optimum equilibrium distribution and hence
their improvement in the spurious velocities is limited. In a
similar vein, Shan �6� investigated improving the isotropy of
the gradient operator for a particular class of multiphase lat-
tice Boltzmann method and noted a reduction in spurious
velocity. Sofonea et al. �7,8� used a finite difference lattice

(a)

(b)

FIG. 1. The steady-state velocity profile around a droplet using
�a� a standard choice of equilibrium distribution and �b� an im-
proved choice of equilibrium.
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Boltzmann �FDLB� approach, and found that flux limiters
and the application of external correcting forces can be ef-
fective at reducing spurious velocities for this particular
method.

In this paper, we analyze the free-energy lattice Boltz-
mann scheme for a liquid-gas system proposed by Swift et
al. �1� and show that by making a careful choice of the
equilibrium distribution �and also finding the best way to
calculate derivatives� the magnitude of spurious velocities
can be significantly reduced. Furthermore, we present a sec-
ond numerical scheme which moves gradient terms in the
equilibrium distribution into a body force. This leads to a
further reduction in spurious velocities while preserving mo-
mentum conservation.

The results of this analysis are equally applicable to other
multiphase systems �e.g., binary fluids� when the free-energy
lattice Boltzmann method is used to solve their equations of
motion.

II. MODEL

The pressure tensor for a liquid-gas system using a Lan-
dau free energy is given by

P�� = �p0 − ���2� −
�

2
����2���� + ������� , �1�

where � is the fluid density and � is a parameter related to
the surface tension. We choose the bulk pressure p0 to be that
of a van der Waals fluid,

p0 =
�T

1 − b�
− a�2. �2�

This leads to liquid-gas phase separation below a critical
temperature.

The analysis which follows is performed for a two-
dimensional lattice Boltzmann scheme �in Sec. VII the re-
sults are summarized for the three-dimensional, 19 velocity
model� which uses a square lattice of side 	x, time step 	t,
and has nine velocity vectors, ei, where e0= �0,0�, e1,2
= �
c ,0�, e3,4= �0, 
c�, e5,6= �
c , 
c�, and e7,8

= ��c , 
c�. The parameter c= 	x
	t is a lattice velocity.

A particle distribution function f i�r , t� gives the mass den-
sity of particles traveling from lattice site r, at time t, in a
direction ei. The physical variables are related to this distri-
bution function by

� = 	
i

f i, �u� = 	
i

f iei�, �3�

where � is the mass density and u is the velocity of the fluid.
The time evolution equation for the particle distribution

function, using the standard Bhatnagar-Gross-Krook �BGK�
approximation, is given by

f i�r + ei	t,t + 	t� = f i�r,t� −
1

�
�f i − f i

eq� + Fi, �4�

where � is a relaxation parameter related to the viscosity, and
f i

eq is an equilibrium distribution. It has been shown previ-

ously that this reduces to the Navier-Stokes equation pro-
vided the moments of f i

eq and Fi are chosen suitably �9� �see
the Appendix�. The final Fi term is responsible for introduc-
ing a body force. This is not present in the standard formu-
lation of the free-energy lattice Boltzmann algorithm and so
for now we set it to zero. In Sec. VI, however, we discuss
how this term can be usefully implemented to help reduce
spurious velocities further.

The equilibrium distribution can be written as

f i
eq�r� =

wi

c2
ei��u� +
3

2c2�ei�ei� −
c2

3
����

 ��u�u� + ��u���� + u���� + ���u�������
+

1

c2 �wi
pp0 − wi

t��2� + wi
xx��x��x� + wi

yy��y��y�

+ wi
xy��x��y�� , �5�

for i=1, . . . ,8, where w1–4= 1
3 , w5–8= 1

12, and summation over
repeated indices is assumed. The i=0 stationary value is cho-
sen to conserve mass,

f0
eq�r� = � − 	

i=1

8

f i
eq�r� . �6�

The top two lines on the right-hand side of Eq. �5� corre-
spond to a standard expansion of the Boltzmann distribution
in discretized space �10�, and a correction term involving �
�see Eq. �A4�� which ensures Galilean invariance �9�. These
terms are not important from the point of view of spurious
velocities because they each contain the fluid velocity u� to
some power, which is expected to be zero in equilibrium.

The last two lines in Eq. �5� give the pressure tensor con-
tribution to the equilibrium distribution. This has been writ-
ten in its most general form involving the free parameter
weights wi

p, wi
t, wi

xx, wi
yy, and wi

xy. Through the course of this
paper optimum values for these parameters will be obtained.

The derivatives in the equilibrium distribution �5� are ex-
plicitly calculated within the algorithm using finite difference
schemes. For instance, one simple choice for calculating the
x derivative of � is given by

�̄x� =
1

2	x
���r + e1� − ��r + e2�� . �7�

The bar above the partial derivative denotes that this is a
discrete operator. By Taylor expanding the right-hand side
we find that

�̄x = �x +
1

6
	x2�x

3 + ¯ . �8�

The discrete operator is correct up to second order but there
are higher-order terms which are responsible for generating
the spurious flows.
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A useful representation of finite difference operators is to
denote them by stencils. For instance Eq. �7� can be rewritten

�x� =
1

2	x� 0 0 0

− 1 0 1

0 0 0


�

. �9�

The central entry in the matrix represents the point at which
the derivative is being made and the surrounding eight en-
tries correspond to the neighboring lattice points surrounding
this. This, however, is not the only choice for calculating the
x derivative. The most general stencil using only nine lattice
nodes can be written

�̄x =
1

	x�− B 0 B

− A 0 A

− B 0 B
 = �x +

1

6
	x2�x

3 + 2B	x2�y
2�x + ¯ ,

�10�

where B is a free parameter which can be used to determine
the third-order term and A is defined by 2A+4B=1.

Similarly, the Laplacian operator can be represented by

�̄2� =
1

	x2�D C D

C − 4�C + D� C

D C D


�

= �2 +
	x2

12
��x

4 + �y
4� + D	x2�x

2�y
2 + ¯ , �11�

where C+2D=1.
In equilibrium the Navier-Stokes equation reduces to

0 = − ��P��. �12�

In terms of the lattice Boltzmann algorithm, the partial
derivative operator acting on the pressure tensor in Eq. �12�
is implemented as a result of the choice of equilibrium dis-
tribution and the streaming and colliding operations. When
�=1 �in Sec. V we discuss the more general case� the lattice
Boltzmann equation �4� reduces to

f i�r,t + 	t� = f i
eq�r − ei	t,t� . �13�

We consider the idealized case when at some time t the
system is at rest, i.e., u�r , t�=0, and the density distribution
is chosen such that the continuous operator equation �12� is
solved exactly. We ask the question what happens when the
continuous operators are replaced by their discrete counter-
parts. In this case Eq. �12� will no longer be exactly satisfied.
Rather, the Navier-Stokes equation becomes

�t��v�� + ����v�v�� = G , �14�

where G is a spurious force generated by the discrete ap-
proximation to the continuous operators. �Note that the pres-
sure tensor term has disappeared because of Eq. �12�.� Be-
cause the velocity field is small then the second term in Eq.

�14�, which is quadratic in velocity, can be ignored. Using
Eq. �5�, G can be expressed in terms of stencils of the vari-
ous terms in the equilibrium distribution,

Gx =
1

	t
��ux�r,t + 	t� − �ux�r,t�� =

1

	t
	

i

f i�r,t + 	t�eix

=
1

	t
	

i

f i
eq�r − ei	t,t�eix =

− 1

	x ��− w5–8
p 0 w5–8

p

− w1–4
p 0 w1–4

p

− w5–8
p 0 w5–8

p 
p0

− �− w5–8
t 0 w5–8

t

− w1–4
t 0 w1–4

t

− w5–8
t 0 w5–8

t 
���2�

+ �− w5–8
xx 0 w5–8

xx

− w1–2
xx 0 w1–2

xx

− w5–8
xx 0 w5–8

xx 
Mxx

+ �− w5–8
yy 0 w5–8

yy

− w1–2
yy 0 w1–2

yy

− w5–8
yy 0 w5–8

yy 
Myy

+ �− w7–8
xy 0 w5–6

xy

− w1–4
xy 0 w1–4

xy

− w5–6
xy 0 w7–8

xy 
Mxy

� ,

�15�

in, for example, the x direction. Here, we define M��

=�������. In writing this we have made use of the symme-
try properties of the system to immediately reduce the num-
ber of free parameters in the model. For instance, the bulk
pressure p0 does not have a preferred direction �i.e., it acts
the same in the x and y directions� and hence we expect that
w1

p=w2
p=w3

p=w4
p, which we denote by w1–4

p , and w5
p=w6

p

=w7
p=w8

p=w5–8
p . Other terms do have a preferred direction.

For example, Mxx is less restricted and has the constraints
w1

xx=w2
xx, w3

xx=w4
xx, and w5

xx=w6
xx=w7

xx=w8
xx. Because the

equilibrium should be invariant under simultaneous inter-
change of x and y and switching the velocities e1,2,7↔e3,4,8,
then we expect that w1–2

xx =w3–4
yy , w3–4

xx =w1–2
yy , and w5–8

xx =w5–8
yy .

To first order, Gx should agree with Eq. �12�, which in the
x direction is given by

Gx = − �x�p0 − ���2�� −
1

2
�x�Mxx − Myy� − �yMxy . �16�

By comparing Eq. �16� with Eq. �15� further restrictions are
possible. For instance, by using Eq. �10�, the p0 stencil be-
comes −�xp0 to second order provided that 2w1–4

p +4w5–8
p =1.

Similarly, 2w1–4
t +4w5–8

t =1, 2w1–2
xx +4w5–8

xx = 1
2 , 2w1–2

yy +4w5–8
yy

=− 1
2 , w1–4

xy =0, w5–6
xy = 1

4 , and w7–8
xy =− 1

4 . These constraints are
also necessary to obtain the correct moments of the equilib-
rium distribution in Eq. �A2�.

Given all these conditions the spurious force can be re-
written as
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Gx =
− 1

	x��
− w5–8

p 0 w5–8
p

− �1

2
− 2w5–8

p � 0 �1

2
− 2w5–8

p �
− w5–8

p 0 w5–8
p


p0

− �
− w5–8

t 0 w5–8
t

− �1

2
− 2w5–8

t � 0 �1

2
− 2w5–8

t �
− w5–8

t 0 w5–8
t


���2�

+ �
− w5–8

xx 0 w5–8
xx

− �1

4
− 2w5–8

xx � 0 �1

4
− 2w5–8

xx �
− w5–8

xx 0 w5–8
xx


Mxx

+ �
− w5–8

xx 0 w5–8
xx

− �−
1

4
− 2w5–8

xx � 0 �−
1

4
− 2w5–8

xx �
− w5–8

xx 0 w5–8
xx


Myy

+
1

4� 1 0 1

0 0 0

− 1 0 − 1


Mxy
� . �17�

There remains only three independent parameters in this
expression, w5–8

p , w5–8
t , and w5–8

xx . In the following section we
choose these unknowns in order to minimize the spurious
velocity contribution.

III. DETERMINING A UNIQUE EQUILIBRIUM
DISTRIBUTION

In this section, we explicitly calculate the spurious force
per unit volume G �see Eq. �17�� for the case of a liquid drop
of radius R. If we take the origin to lie at the center of the
drop, then the density � is solely a function of distance from
that origin r=�x2+y2. Taylor expanding the p0 stencil �see
Eq. �10�� we find the contribution to the force from this term
is given by

Gx
p = − ��x +

1

6
	x2�x

3 + 2w5–8
p 	x2�x�y

2�p0. �18�

Transforming from Cartesian into polar coordinates is
achieved using the relations

�x →
x

r
�r, �y →

y

r
�r. �19�

By sequentially substituting these operators and performing
derivatives, Eq. �18� can be rewritten

Gx
p = − xDrp0 − x�1

2
+ 2w5–8

p �	x2Dr
2p0

− �1

6
x3 + 2w5–8

p xy2�	x2Dr
3p0, �20�

where we define Dr= 1
r �r. By symmetry, the y component can

be obtained by interchanging the x and y labels in this ex-
pression. The force can be decomposed into two terms: a
term parallel and a term perpendicular to the interface. The
perpendicular contribution results in a small deviation in the
Laplace pressure difference across the interface. The parallel
term cannot be corrected for in this way and thus it is respon-
sible for inducing spurious flows.

A parallel vector is given by n� = �−y ,x� and, therefore,
this tangential contribution can be calculated using

Gp · n� = �x3y − xy3��1

6
− 2w5–8

p �Dr
3p0. �21�

This is zero provided that w5–8
p = 1

12. An analysis of other
terms in Eq. �17� can be performed in a similar way. For

FIG. 2. The maximum spurious velocity v �in units of lattice
velocity c� as a function of �a� the equilibrium distribution param-
eters p=w5–8

p �solid line�, p=w5–8
t �dashed line�, p=w5–8

xx �dotted
line�, and �b� the stencil parameters p=B �solid line�, p=D �dashed
line�, and the force stencil parameter p=F �dotted line�.
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instance, the force contribution from the Laplacian term is
given by

Gx
t = ��x +

1

6
	x2�x

3 + 2w5–8
p 	x2�x�y

2�

����2� +

	x2

12
��x

4 + �y
4�� + D	x2�x

2�y
2��� .

�22�

By repeating the process that was used to derive Eq. �21�,
we find that this contribution vanishes provided that w5–8

p

= 1
12 and D= 1

6 .
When transformed into polar coordinates, the tangential

force from the M�� terms in Eq. �17� is given by

GM · n� = �
�x5y − xy5��−
1

12
− 2w5–8

p �	x2Dr
3�Dr��2

+ �x3y − xy3��−
1

12
− w5–8

p �	x2Dr
2�Dr��2

+ �x5y − xy5��1

6
− 2B�	x2Dr��Dr���Dr

3���

+ �x3y − xy3��1

6
− 2B�	x2�Dr���Dr

3��� . �23�

The last two lines on the right-hand side become zero
when B= 1

12. Generally, it is not possible to make the first two
lines simultaneously zero. However, it turns out that the first
term dominates over the second, and so the best choice is
w5–8

p =− 1
24. The reason for this is that the width of the inter-

face is much smaller than the radius of curvature. The den-
sity � is approximately constant in the bulk regions but var-
ies sharply in the interface. If we denote the width of the
interface to be W then the largest value for a derivative can
be typically obtained using �r� 1

W . Since the operator Dr
appears one more time on the first line than the second, and
it contains an extra factor of x2 or y2, then we expect the ratio
in the magnitude of the first two lines to be approximately
� R2

WR � R
W . In fact, a detailed analysis explicitly calculating

the two functions based on a hyperbolic tangent interface
profile reveals that their maxima differ by a factor 3 R

W . Thus
provided R�W the second line will be negligible compared
to the first.

Now that we have obtained a unique choice for the equi-
librium, it is interesting to note that, to the best of our knowl-
edge, none of the previously proposed free-energy lattice
Boltzmann schemes make this optimum choice. For ex-
ample, Inamuro et al. �5� choose w5–8=0 and Desplat et al.
�11� choose w5–8=− 1

72.
The analysis performed in this section was for a circular

drop. The results, however, are generally true for an arbitrary
configuration of interfaces in a two-dimensional system. This
is because any interfacial curve can locally be approximated
by the arc of a circle.

IV. NUMERICAL RESULTS

To test the predictions made in the previous section, we
perform simulations on a grid of size 100100. Parameters

used were a= 9
49, b= 2

21, and T=0.56, leading to liquid-gas
phase separation with densities �l=4.54 and �g=2.57. The
interfacial tension was set using �=0.025, giving an inter-
face width of approximately three lattice sites.

A drop of radius R=25 was initialized at the center of the
system and simulations were run for 104 time steps to allow
steady-state conditions to be reached. Figure 1�a� shows the
flow profile around the drop for a typical set of parameters.
We clearly observe eight vortices in the gas phase surround-
ing the curved interface of the drop. Figure 1�b� shows the
dramatic reduction in the spurious flow when the best param-
eter choice is used.

We now show numerically that spurious velocities are
minimized using the theoretically predicted parameter set de-
rived in the previous section �as summarized later in, and
after, Eq. �33��. This is done by fixing all but one of the
parameters to this optimum choice, and scanning the one free
parameter over a range to show that it is, indeed, minimized
at the predicted value. In the computer algorithm, this scan-
ning procedure was performed sufficiently slowly to be qua-
sistatic �i.e., the spurious velocities were always at their
steady-state values�.

Figure 2 shows the results. The spurious velocity on the y
axis is defined to be the maximum velocity magnitude in the
system. The solid curve in Fig. 2�a� shows how this velocity
varies with w5–8

p . It clearly reaches a minimum very close to
that predicted theoretically �w5–8

p = 1
12�. The spurious velocity

never reaches exactly zero because our analysis only consid-
ered terms up to O��4� in the Taylor series expansion for the
stencils �Eqs. �10� and �11��. In reality, higher-order terms
also induce spurious velocities but these terms will be � 1

W2

smaller, and so have much less effect provided the interface
width is reasonably large.

The other curves in Fig. 2 show minima which correspond
well with the values w5–8

t = 1
12, w5–8

xx =− 1
24, B= 1

12, and D= 1
6

predicted in Sec. III. Note that when the simplest choice for
calculating the derivatives is used �see Eq. �9��, the spurious
velocities are �10 times larger than for the optimum choice
�this corresponds to B=0 in Fig. 2�b��.

0.5 1 1.5 2
τ

0

1

2

3

4

v
(1

0-5
c)

FIG. 3. The variation in spurious velocity v �in units of lattice
velocity c� as a function of � for the standard lattice Boltzmann
�solid line� and for the new forcing method �dashed line�.
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In general, the approach of scanning around a particular
point in parameter space only guarantees that we have found
a local minimum. However, the spurious velocity landscape
is rather simple in that we only ever observe a single mini-
mum in each of the scans, and so only a single global mini-
mum exists in the entire parameter space.

V. WHAT HAPPENS WHEN �Å1

To obtain Eq. �17� we assumed that �=1 and so the lattice
Boltzmann equation reduced to f i�r , t+	t�= f i

eq�r−ei	t , t�.
The more general case can be calculated under steady-state
conditions by sequentially substituting Eq. �4� back into the
f i term on the right-hand side. This gives

f i�r� =
1

�

 f i

eq�r − ei	t� + f i
eq�r − 2ei	t��1 −

1

�
�

+ f i
eq�r − 3ei	t��1 −

1

�
�2

+ ¯ � . �24�

Therefore, f i�r� can be expressed in terms of the equilibrium
distributions along lines of points radiating out following the
velocity vector directions. The magnitude of these contribu-
tions decreases by a factor z= �1− 1

� � for each step away. The
stencils in Eq. �17� are no longer finite in size. For instance,
the inner 55 region of the p0 stencil now looks like

1

��
− w5–8

p z 0 0 0 w5–8
p z

0 − w5–8
p 0 w5–8

p 0

− w1–4
p z − w1–4

p 0 w1–4
p w1–4

p z

0 − w5–8
p 0 w5–8

p 0

− w1–4
p z 0 0 0 w5–8

p z


p0

. �25�

Converting this into continuous operators gives

�̄xp0 = 
�x + S�1

6
	x2�x

3 + 2w5–8
p 	x2�y

2�x� + ¯ �p0,

�26�

where the sum S is

S =
1

�
	
i=1

�

i3zi−1 = � − 6�2 + 6�3. �27�

Since S is simply a numerical factor multiplying all the O��3�
terms then it will also premultiply the spurious force expres-
sions in Eqs. �21� and �23�. Such a change does not alter the
optimum choice of equilibrium when ��1.

The solid line in Fig. 3 shows how the numerically calcu-
lated spurious velocities depend on � using the optimum
choice for all other parameters. The function S passes
through zero when �= 1

2 + 1
2�3

=0.789. This condition was cal-
culated by Swift et al. �1� using a different method. It does
not correspond exactly with the minimum of the curve be-
cause higher-order spurious velocities become important in
this region.

As � is increased the spurious velocities rapidly increase
in magnitude. These are principally generated by the small

term on the second line of Eq. �23� being multiplied by the
very large numerical factor S, which grows as �3.

VI. USING A FORCING METHOD

Rather than incorporating the problematic M�� terms into
the equilibrium distribution, it is also possible to put them
into a body force. The term Fi in Eq. �4� is given by

Fi =
wi

c2
ei�g� +
3

2c2�ei�ei� −
c2

3
�����u�g� + u�g��� ,

�28�

where g is a body force that now appears on the right-hand
side of the Navier-Stokes equation �A7�. In this forcing
scheme, the wi

xx, wi
yy, and wi

xy terms are removed from the
equilibrium distribution �5� and replaced by

gx = −
1

2
�̄x�Mxx − Myy� − �̄yMxy

= −
1

	x�− F 0 F

− E 0 E

− F 0 F


Mxx−Myy/2

−
1

	x� F E F

0 0 0

− F − E − F


Mxy

�29�

in the x direction. gy may be obtained by interchanging the
labels x and y and transposing the stencils. Such a procedure
leaves the continuum Navier-Stokes equation unchanged.

This method has the advantage of allowing extra degrees
of freedom in choosing the stencils as compared to the stan-
dard lattice Boltzmann. In particular, we can choose to have
a symmetry between the derivatives in the x and y directions
�i.e., the y stencil can be obtained by transposing the x�. By
comparison, Eq. �17� clearly cannot have this property. This
improvement in the isotropy of the governing equation helps
to reduce spurious velocities further.

The dotted line in Fig. 2�b� shows numerical results of
how the spurious velocities change as a function of the sten-
cil parameter F. The minimum of this curve lies at F= 1

12,
corresponding to a standard choice. By comparing the mag-
nitude of the spurious velocity at this point with the minima
from the other curves, we conclude that the forcing method
leads to a further approximately fivefold reduction, giving a
typical value of �210−6c.

Another advantage of using forcing is shown in Fig. 3. As
� is increased the spurious velocities normally become non-
negligible due to the large numerical factor S in Eq. �27�
multiplying the otherwise small contribution from the second
line in Eq. �23�. In the forcing method this term goes to zero
allowing for accurate simulation of more viscous systems.

In general, the disadvantages of using forcing methods are
that they make boundary conditions more complicated and, if
being run on a parallel computer, require more information
to be passed between computer microprocessors. This is
because the standard two-dimensional lattice Boltzmann
method only requires information from the surrounding 8
points to update each lattice site, whereas the forcing method
requires information from 24 points.
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VII. EXTENSION TO THREE-DIMENSIONAL LATTICE
BOLTZMANN SCHEMES

A number of different lattice Boltzmann schemes have
been proposed for simulating three-dimensional �3D� sys-
tems using 15, 19, or 27 lattice velocities. In this paper we
find that 19 lattice vectors are necessary to ensure the reduc-
tion in spurious velocities for a spherical drop. One way to

define the velocity vectors in this model is the following:
e1–6 lie along the nearest neighbor directions

�ex1–6

ey1–6

ez1–6
� = �c − c 0 0 0 0

0 0 c − c 0 0

0 0 0 0 c − c
 ,

and e7–18 are in the 12 square diagonal directions

�ex7–18

ey7–18

ez7–18
� = �c − c c − c 0 0 0 0 c − c c − c

c c − c − c c − c c − c 0 0 0 0

0 0 0 0 c c − c − c c c − c − c
 .

Analogous to the definitions for the gradient and Laplacian
stencils given in Eqs. �10� and �11�, we define

�̄x =
1

	x�� 0 0 0

− B 0 B

0 0 0
�,�− B 0 B

− A 0 A

− B 0 B
�,� 0 0 0

− B 0 B

0 0 0
� ,

�̄2 =
1

	x2�� 0 D 0

D C D

0 D 0
�,�D C D

C E C

D C D
�,� 0 D 0

D C D

0 D 0
� ,

�30�

where E=−6C−12D, 2A+8B=1, C+4D=1 and the left,
middle, and right matrices show slices of the stencil when
ezi=c , 0, and −c, respectively.

In three dimensions, additional terms containing wi
zz, wi

zx,
and wi

yz appear in the equilibrium distribution �5�. By using
the same procedure as in Sec. III, this distribution can be
uniquely defined. One additional complication in the three-
dimensional case is that there is no longer a single vector
defining a tangent to the surface of a drop. Instead we use
three vectors n�

1= �−y ,x ,0�, n�
2= �0,−z ,y�, and n�

3= �−z ,0 ,x�
and require that the spurious force parallel to each one of
these is zero. For instance, the previous expression in Eq.
�23� becomes

GM · n�
1 = �
�x5y − xy5��−

1

12
− 2w7–10

xx �	x2Dr
3�Dr��2

+ �yx3z2 − xy3z2�� 5

12
+ 2w7–10

xx − 4w11–14
xx �

	x2Dr
3�Dr��2

+ �x5y − xy5��1

6
− 2B�	x2Dr�Dr���Dr

3��

+ �yx3z2 − xy3z2��1

6
− 2B�

	x2Dr�Dr���Dr
3��� . �31�

For the first line to be zero then w7–10
xx =− 1

24. The second line,
therefore, is zero only when w11–14

xx = 1
12. The last two lines

vanish when B= 1
12.

A summary of all parameters obtained using this proce-
dure is given below,

w1–6 = w1–6
p = w1–6

t =
1

3
,

w7–18 = w7–18
p = w7–18

t =
1

12
,

w1,2
xx = w3,4

yy = w5,6
zz =

1

3
,

w3–6
xx = w1,2,5,6

yy = w1–4
zz = −

1

3
,

w7–10
xx = w15–18

xx = w7–14
yy = w11–18

zz = −
1

24
,

w11–14
xx = w15–18

yy = w7–10
zz =

1

12
,

w1–6
xy = w1–6

yz = w1–6
zx = 0,

w7,10
xy = w11,14

yz = w15,18
zx =

1

4
,

w8,9
xy = w12,13

yz = w16,17
zx = −

1

4
,

w11–18
xy = w7–10

yz = w15–18
yz = w7–14

zx = 0,
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A =
1

6
, B =

1

12
, C =

1

3
, D =

1

6
. �32�

Note that for a system one lattice unit wide this equilibrium
reduces to the 2D result.

The equilibrium distribution derived here is based on re-
ducing spurious velocities around a spherical drop. However,
an arbitrary interfacial surface cannot locally be approxi-
mated by the surface of a sphere �e.g., a saddle point�, and so
for more complicated geometries spurious velocities could
still arise. Therefore, it may be necessary to use a 27 lattice
velocity vector model and tune the extra degrees of freedom
to eliminate these spurious terms. This will be investigated in
future research.

VIII. SUMMARY AND CONCLUSIONS

In this paper we analyzed the spurious velocities from two
different methods: a standard lattice Boltzmann scheme and
a forcing method.

First, we calculated the spurious forces which originate
when the continuous operators in the Navier-Stokes equation
are replaced by stencils �in other words the contribution from
the next order in the Taylor series expansion of the stencils�.
Second, we identify that spurious velocities result from the
component of these spurious forces acting parallel to the in-
terface. Finally, we find that by making a suitable choice of
the equilibrium distribution and stencils we were able to set
these parallel forces to zero �up to fourth order in the deriva-
tives�.

In 2D, the best choice of stencils for calculating the de-
rivatives and the Laplacian are

�̄x =
1

12	x�− 1 0 1

− 4 0 4

− 1 0 1
, �̄2 =

1

6	x2�1 4 1

4 − 20 4

1 4 1
 .

�33�

Using the standard lattice Boltzmann model the equilib-
rium is given by Eq. �5�, where the optimum choice of pa-
rameters is w1–4=w1–4

p =w1–4
t = 1

3 , w5–8=w5–8
p =w5–8

t = 1
12, w5–8

xx

=w5–8
yy =− 1

24, w1–2
xx =w3–4

yy = 1
3 , w3–4

xx =w1–2
yy =− 1

6 , w1–4
xy =0, w5,6

xy

= 1
4 and w7,8

xy =− 1
4 . In 3D the corresponding results are sum-

marized in Eqs. �30� and �32�.
One way to improve spurious velocities further is to re-

move the M��=������� terms from the equilibrium distri-
bution and implement them as a body force. This force is
then explicitly calculated by taking derivatives of M�� using
the stencil in Eq. �33� �or Eq. �30� in the 3D case�. The
additional symmetry in the resulting equations leads to a
further reduction in spurious velocity size.
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APPENDIX: THE MOMENTS

To conserve mass and momentum the first two constraints
on the equilibrium distribution must be

	
i

f i
eq = �, 	

i

f i
eqei� = �u�. �A1�

The higher-order moments of f i
eq are chosen such that the

resulting continuum equations describe the dynamics of a
nonideal fluid. A suitable choice is

	
i

f i
eqei�ei� = P�� + �u�u� + ��u���� + u���� + ���u����� ,

�A2�

	
i

f i
eqei�ei�ei� =

�c2

3
����u� + ���u� + ���u�� , �A3�

where

� =

	x2�� −
1

2
�

3	t
, � = ��1 −

3cs
2

c2 � �A4�

will become the shear and bulk kinematic viscosities, respec-
tively. The speed of sound is given by cs

2=
dp0

d� , where p0 is
the fluid pressure �2�. The term involving � on the right-hand
side of Eq. �A2� is necessary to ensure Galilean invariance
�9�. For an ideal gas with cs

2= c2

3 it is zero, but in the more
general case it must be included.

The moments of the forcing term Fi are defined by

	
i

Fi = 0, 	
i

Fiei� = 	tg�,

	
i

Fiei�ei� = 	t�u�g� + u�g�� , �A5�

where g is the body force per unit volume acting on the fluid.
By applying the Chapman-Enskog expansion to the lattice

Boltzmann equation �4� �10�, we obtain the continuity equa-
tion for the total density

�t� + ����v�� = 0, �A6�

and the Navier-Stokes equation for the fluid momentum

�t��v�� + ����v�v��

= − ��P�� + g� + ��������v� + ��v��

+ �������v�� , �A7�

where the fluid velocity is defined by

v = u +
	t

2�
g . �A8�

Note that this definition differs slightly from the lattice fluid
velocity �3� in the case when the body force is nonzero. It is
v, and not u, which is used to calculate the spurious veloci-
ties in Sec. VI.
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